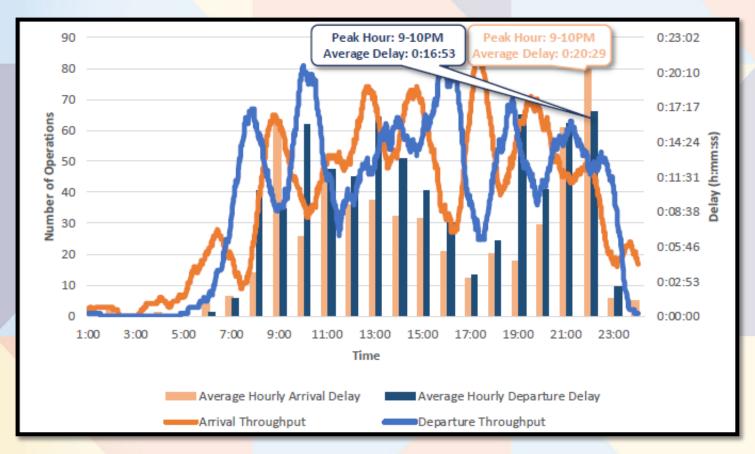
Greg Albjerg, P.E.

- Vice President, Senior Aviation Consultant
- HNTB Corporation
- MSP Long Term Plan (Responsible for Airside Planning)

Airfield Capacity Study

HNTB Corporation Greg Albjerg, P.E.


EXPERIENCE msp

Study Objectives

- Develop A Well-Calibrated Baseline Simulation That Takes Into Account The Present-State Airfield And Close-In Airspace
- Predict How Much Of The Existing Airfield's Capacity Is Needed To Accommodate Existing And Forecast Demand Levels And Estimate Associated Levels Of Delay
- Develop A Flexible Simulation Model That Can Be Used To Test How Alternative Scenarios Affect Airfield Capacity
- Provide Summary Results In A Manner That Facilitates Effective Dialogue Across Stakeholder Groups And Promote A Better Understanding Of The Relationship Between Airfield Capacity Aircraft Delay

Capacity Definition: Demand vs. Delay

 Number Of Aircraft
Operations (takeoffs and landings) That Can
Be Accommodated
Along With An
Acceptable Or Tolerable
Amount Of Delay

Capacity: Considerations

- Annual Capacity Is Best Indication Of How Much Airport Traffic Can Be Handled Throughout A Year
- Many Variables Need To Be Considered
 - When Flights And Peak Activity Occurs (Daily and Seasonal)
 - Runway Use As Directed By ATC
 - Five Typical Configurations
 - Each Affects How Quickly Aircraft Can Arrive, Depart and Move Around The Airfield
 - Weather Conditions
 - Wind Has A Major Impact On Which Runways Can Be Used
 - The Safe Distances Required Between Aircraft Is Less In Good Visibility Than In Poor Weather Conditions
- Hourly Capacity Has Also Been Determined For This Study

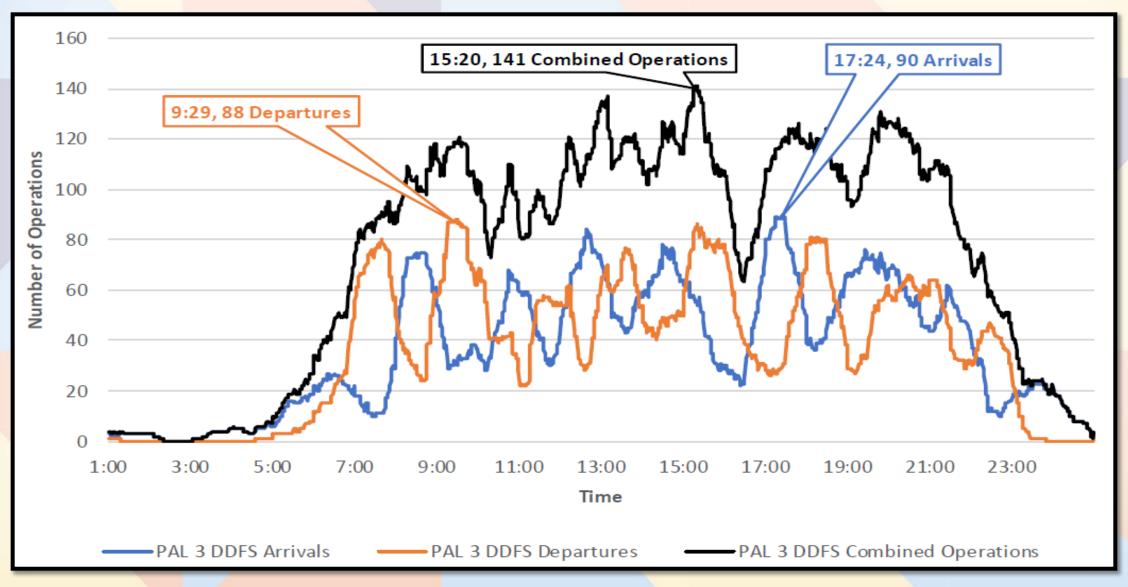
Delay Definition

 Delay is any increase in time beyond the time it would take an aircraft to make its trip by flying or taxiing at normal speeds along the shortest typical route

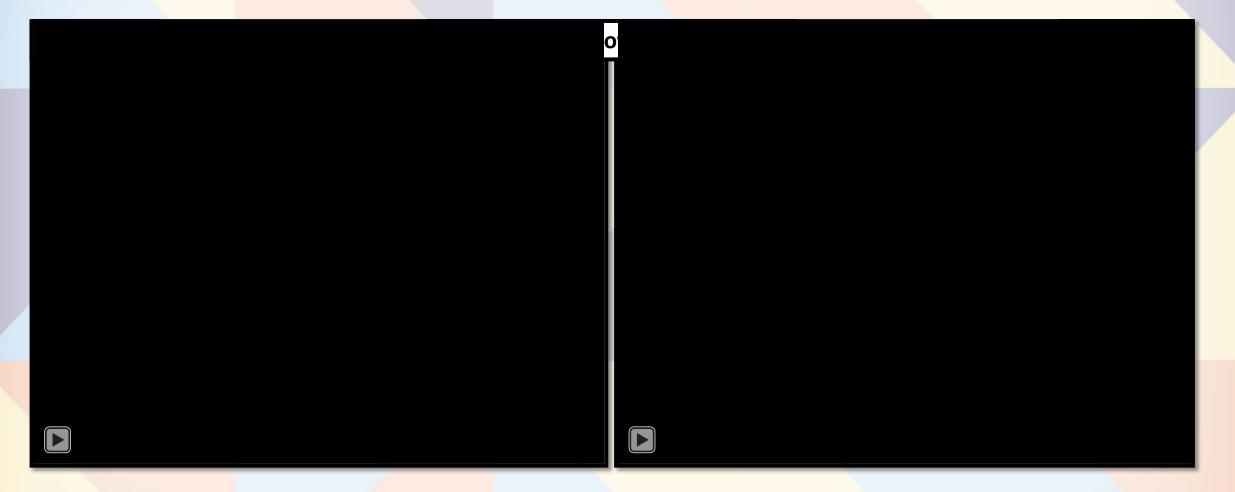
– Examples of Delays:

- Waiting for room to push from gate
- Waiting for clearance to enter the runway and takeoff
- Congestion along a taxiway
- Waiting to cross a runway

An aircraft needs to slow down or take a longer path to provide spacing


MSP Capacity and Delay

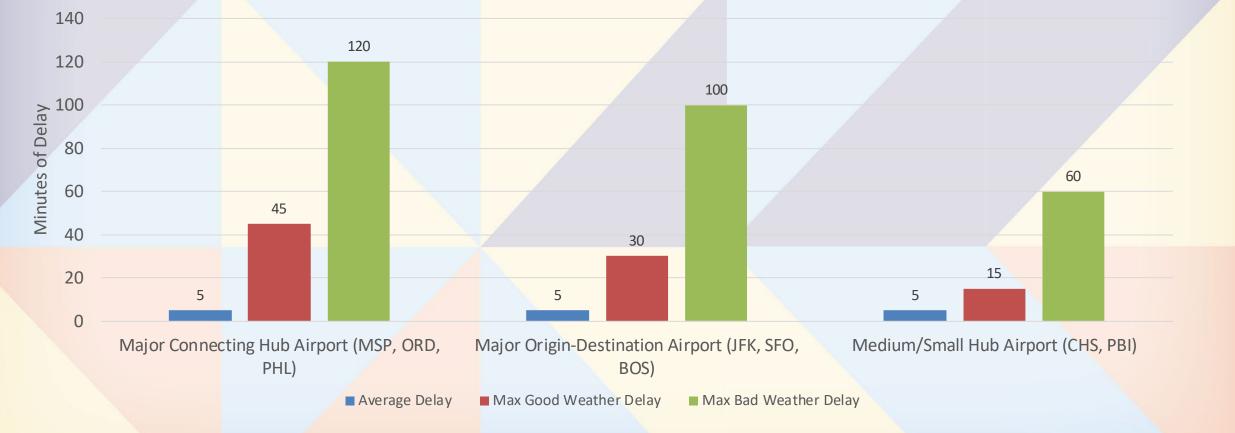
- Utilize the state-of-the-art fasttime airport/airspace simulation software, AirTOP
- Models were calibrated working closely with: FAA Air Traffic, MAC, Airlines
- 56 Simulations constructed:
 - 5 primary runway use configurations with 3 major weather categories
 - 4 planning activity levels (PALs)



Planning Activity Level (PAL) 3 Design Day Flight Schedule

MSP Capacity and Delay

MSP Capacity Metrics Summary for 2018 ADPM Modeled Configurations (Minutes)


Runway Configuration		Weather	Average Total Delay Per Operation	Modeled Annual % In Flow	Average ADPM Delay
Straight North	17 12 17 12 22 30 30 30 30 27%	Good (VMV)	3.41	11.18%	
		Marginal (MVMC)	3.76	5.06%	
		35	Poor (IMC)	3.97	1.30%
North	12L 30L 18%	Good (VMC)	2.97	16.68%	2.60
		Marginal (MVMC)	3.22	2.00%	
Mixed A	17 12R 22 30R 30R 30L 35	Good (VMC)	2.19	9.74%	
		Marginal (MVMC)	2.32	1.69%	
		Poor (IMC)	2.35	0.38%	
South	39.5% 12L 22 30R 30R 30L	Good (VMC)	2.01	28.26%	
		Marginal (MVMC)	2.05	6.81%	
		Poor (IMC)	2.12	2.99%	
Straight South	4.4% 12L 22 177 30R 35	Good (VMC)	2.93	3.47%	
		Marginal (MVMC)	3.10	1.42%	
		Poor (IMC)	3.23	0.94%	

MSP Capacity Metrics Summary for PAL 3 ADPM Modeled Configurations (Minutes)

Runway Configuration		Weather	Average Total Delay Per Operation	Modeled Annual % In Flow	Average ADPM Delay
Straight North	17 12 17 12 17 22 30 30 30 1 32 76	Good (VMV)	22.71	1.5%	-
		Marginal (MVMC)	23.01	0.7%	
		35	Poor (IMC)	23.55	1.3%
North	112L 22 30R 30L 118%	Good (VMC)	8.78	26.3%	8.26
		Marginal (MVMC)	9.64	6.4%	
Mixed A	17 12R 22 30R 30L 35	Good (VMC)	7.10	9.7%	
		Marginal (MVMC)	8.04	1.7%	
		Poor (IMC)	8.08	0.4%	
South	39.5% 12L 22 30R 30L 35	Good (VMC)	5.87	28.6%	
		Marginal (MVMC)	6.26	7.4%	
		Poor (IMC)	6.77	3.5%	
Straight South	4.4% 12L 22 30R 35	Good (VMC)	13.65	3.2%	
		Marginal (MVMC)	15.53	0.8%	
		Poor (IMC)	15.85	0.4%	

Relationship Between Average Delays and Peak Delays: ACRP Report 104 – *Defining and Measuring Aircraft Delay and Airport Capacity Thresholds* (2014)

Comparison of Airports with Frequent Low Visibility Conditions with Throughput Limitations

Industry Guidance On Level Of Service (ACRP 79 – 2012)

The following scale for levels of service was suggested by a DOT report to Congress:

- 4 to 6 minutes of Annual Average Delay (AAD) per operation
 - Limited peak-hour Visual Flight Rules (VFR-Good Weather) delays
 - Moderate Instrument Flight Rules (IFR-Bad Weather) delays
- 6 to 8 minutes of AAD per operation
 - High peak hour delays in VFR
 - Consistently high levels of delays throughout the day in IFR
- 8 to 10 minutes of AAD per operation
 - Delays expand beyond peak hours in VFR
 - Unsustainable delays resulting in multiple cancellation in IFR
- Over 10 minutes of AAD per operation
 - Consistently high level of delays throughout the day in VFR
 - Extensive flight cancellations and delays reverberate through other airports in IFR

Maximum Delay Level Chosen For MSP Capacity

- Used Several Sources To Chose 10 Minutes of Average Daily Delay
 - FAA
 - US DOT
 - Airport Cooperative Research Program (ACRP) Studies
- Evaluated 10 Minutes Of Average Delay For The Average Day Of The Year (AAD) And The Average Day Of The Busiest Month (ADPM)

Summary of MSP Capacity

- 10 Minutes of Average Annual Delay Set as Acceptable Capacity Limit for MSP
- Modeling/Simulation Analysis Shows the Existing Airfield Would Be Able to Accommodate the Projected Operations Over The 20 Year Planning Horizon
- During Some of The Busiest Periods (Summer) Delays Will Approach The 10 Minutes Of Average Delay
- A New Runway Is Not Needed

Next Steps

- Long Term Plan will evaluate a number of options for increasing the airfield's efficiency:
 - Modifications to existing airfield geometry
 - Construct additional taxiways
 - Construct additional holding and parking aprons
 - An additional runway is not being considered within this Long Term Plan

Thank You!

